
Journal of  Statistical Physics, Vol. 73, Nos. 1/2, 1993 

Langevin Dynamic Simulation of Hysteresis 
in a Field-Swept Landau Potential 

Mangal C. Mahato I and Subodh R. Shenoy 1 

Received February 5, 1993 

Numerical simulations are done of Langevin dynamics for a uniform-order- 
parameter, field-swept Landau model, ~ = - ] a / 2 l m 2 +  Ib/4im4-mh(t) ,  to 
study hysteresis effects. The field is swept at a constant rate h(t) = h(O) + hr. The 
stochastic jump values of the field {h j} from an initially prepared metastable 
minimum rn(0) are recorded, on passage to a global minimum re(z). The results 
are: (a) The mean jump /~s(h) increases (hysteresis loop widens) with /~, con- 
firming a previous theoretical criterion based on rate competition between 
field-sweep and inverse mean first-passage time ( ~ )  (FPT);  (b) The broad 
jump distribution p(hj, h) is related to intrinsically large FPT fluctuations 
(('t'2)--('r)2)/('~2)~O(1), and can be quantitatively understood. Possible 
experimental tests of the ideas are indicated. 

KEY WORDS:  Hysteresis; overshoot phenomena; Langevin simulation; time 
sweep of control parameter; first passage times. 

1. I N T R O D U C T I O N  

Hysteresis or overshoot phenomena occur in a diverse range of systems, 
such as magnets,(1) glassy melts,(2"3~ and optically bistable devices. (4) When 
an external control paramei~er is swept, the system does not respond 
linearly and instantaneously, but overshoots past the reversible transition 
path. On repeated cycling, back and forth, the overshoots trace out a 
closed hysteresis curve. 

An example of a temperature-induced overshoot is the supercooling of 
a liquid melt past its crystallization temperature. For sufficiently large 
cooling rate ll/'l and a large undercooling, glass may be formed. Clearly, 
hysteresis may have kinetic aspects that depend on intrinsic time scales and 
external control-parameter sweep rates. 
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Approaches to hysteresis, as opposed to purely relaxational studies of 
first-order kinetics, may be divided into at least three broad categories. 

(a) Phenomenological free energies F(m, h) with physically moti- 
vated nonlinearities or inhomogeneities (5 7) giving rise to a nonlinear (and 
deterministic) ra(h). One could also include switching rules (s) based on 
these ideas. 

(b) Numerical solution of coupled deterministic equations for the 
order parameter and correlation function, obtained from averaging time- 
dependent Ginzburg Landau equations, with noise, and with sinusoidal 
drives h(t)=Hosin(g2t  ). These hysteresis investigations (9'1~ go beyond 
previous, purely relaxational, calculations. 

(c) Hysteresis based on Langevin kinetics, 111-18) (or Monte Carlo 
simulations ~19)) in particular rate competition between sweep rates and 
decay/relaxation rates. 

Within the last-mentioned category, a detailed general criterion for 
hysteresis has been developed by Agarwal and Shenoy (15'16) based on the 
first-passage time (FPT) formalism. (z~ The starting point is a Langevin 
equation for the order parameter m(t), and the FPT equation derived from 
it includes competing deterministic and stochastic forces. The criterion 
states that for hysteresis to occur, the field-sweep rate h should exceed a 
minimum hmin(h) set by the field-dependent times scales of the system: 
]~ ~/tmin(h ). The equality denotes the failure of hysteresis, and defines a 
theoretical (mean) jump value h =/~j. 

In this paper (which is a longer version of a conference presenta- 
tion (~8)) we do a numerical simulation of a driven Langevin model, without 
averaging or truncation, to study "experimentally" the phenomenon of 
hysteresis. The model is one of the simplest possible that can undergo a 
first-order transition, namely a uniform-m Landau free energy with a 
double well, 

~ =  [a[m2 [b[m4 mh(t) (1.1) 
- T  +-a- 

The model has recently been found (17) to have a physical realization 
through a silica grain hopping between two optical traps of high field 
intensity. This model can be also viewed as representing a magnetic 
"domain" of finite size of magnetization m. The control parameter is an 
external magnetic field, linearly swept at a constant rate h, which plays a 
central conceptual role: 

h(t) = h(O) + ]~t (1.2) 

The Langevin equation is solved for re(t) for fixed h. The data collected for 
N independent repeated runs for a given h are the (stochastic) field values 
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{h j} at which a "jump" occurs to the globally stable minimum (Fig. 1). 
The "jump field" thus is not a single value even for N-*  ~ ,  but is a 
distribution. 

Comparison is made between the theoretical (12'15"16) /~,(/~) and the 
mean value from experimental data {h j}. The faster the sweep, the 
greater is the overshoot. However, we do not find a simple universal- 
exponent power-law d e p e n d e n c e  (1~ o n  the sweep rate. Fluctuations, 
described by the distribution p(hj; h), can be theoretically related to the 
intrinsically large fluctuations in the first-passage time, where, for h = 0, 
( ~ 27 2 ) __ ~,.C ) 2 ) / ~  2T ~ 2 ~,~ O ( l ) .  A quantitative understanding of hysteresis i n  a 

Landau-Langevin model is thus obtained that may have a more general 
relevance. 

Our work differs from others (9'1~ 19,24,25) in certain respects. 
The conceptual advantage of a linear h(t) sweep is that the sweep 

rate /~ is a constant, independent of both time and initial value h(0). 
(A repetitive cycling would involve a piecewise constant/~.) This focuses on 
the essential picture of hysteresis as rate competition. By contrast, a cosine 
sweep h(t)= h(0)cos(t'2t) has a more complex sweep rate that depends on 
initial values and varies at every instant of the sweep. 

The advantage of using al first-passage-time formulation to estimate 
metastable lifetimes is that while the mean value is essentially the inverse 
Kramers rate, (21) the FPT formalism is more powerful, in that it can 
describe lifetime fluctuations, which turns out to be important. 

The advantage of using a Langevin simulation is that it is a computer 
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Fig. i. Schematic mean order parameter rh versus field h. For/~ = 0 there is a reversible jump 
at h = 0  + o r  0 ; for h S O ,  a hysteresis loop with a mean jump at (/~j(,~) and a scatter under 
repeated runs. 



126 Mahato and Shenoy 

experiment directly recording the interplay between the stochastic jump 
and the deterministic sweep that underlies hysteresis. 

We now briefly consider some background to this work. The early 
phenomenological approaches to magnetization hysteresis have already 
been reviewed elsewhere. ~5-7'~~ The work by Barker e ta / . ,  (5'6) in particular, 
considers a model of noninteracting uniform-m domains and a distribution 
of jump fields yielding hysteresis curves on averaging. 

Within numerical work, Binder (22) has considered nonequilibrium 
magnetization decay in Ginzburg-Landau models, introducing a nonlinear 
relaxation function based on deviation from eventual t--+ oo values. Paul 
et al. (23~ have considered the relaxation of mean-field, finite-volume Ising 
systems described by a master equation and also evaluated mean first- 
passage times for metastable decay. Mazenko and Zannetti ~9) considered 

• n  tp/2(r)) 2 models with Langevin relaxation in multicomponent ( i=~ 
dynamics. They averaged over random forces and solved the coupled 
order-parameter and correlation-function equations. Rao et aL (~~ included 
a sinusoidally cycled field h( t )  = Ho sin(f2t) to consider hysteresis effects in 
this model. A principal result was the scaling of the hysteresis loop area A 
with the amplitude H 0 and frequency I2 as A oc H;f2  v. The exponents c~ 
and/3 for this system were found to be c~ = 0.66 _+ 0.05 and/3 = 0.33 _+ 0.03 
over a frequency range extending over three decades. A cell dynamical 
simulation was done for an n = 1, 2D, (~2)2 model by Sengupta et aL, (24) 
who obtained ~ = 0.47 -t- 0.02 and/3 = 0.40 _+ 0.01. Dhar and Thomas (2s) find 

=/3 = 1/2 in an n-vector model, for large n. Ising model simulations (19) 
show ~ =/3 = 0.36 in a low frequency limit. Jung et a/. (26) studied the over- 
damped (deterministic) dynamics of a particle in a bistable n = 1 model 
with a quadratic double well and a sinusoidal driving force. Their study 
naturally overestimated the area A, since jumps occur only after the 
spinodal point, when barriers vanish. They found c~ =/3 = 2/3. 

Turning to hysteresis criteria based on rate competition, the naive 
early estimate is as follows. ~1~'12) To observe hysteresis, the field sweep rate 
/~ should be faster than the system decay rate from the initial state to the 
energetically favorable final state. Various forms of this intuitive idea are all 
essentially equivalent to /)> rdecay~, where raeoay is the characteristic decay 
time of the system. Skripov and Skripov (m suggested this criterion on 
physical grounds (spinodal decay model). Gilmore ~2) suggested that Zaecay 
could be estimated by the mean FPT. 

Agarwal and Shenoy ~1s'16) obtained a more detailed hysteresis 
criterion, based on rate competition, with important prefactors to the 

2Alternative definitions of the absorbing boundary are the top of the barrier (m 3 in ref. 15) or 
some fraction into the globally stable well. (3~ 
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decay rate "(de~ay = ("C) 1~ Tpl ,  which depends 2 on the ff/3(h) boundary 
defining "passage" and varies with h. Since the main concern involves 
comparison of rates of various processes, the external field was chosen to 
be linearly varying with time, for simplicity. (The linear variation of the 
sweeping field is like the temperature sweeps used in the undercooling that 
precedes the glass transition.) Since the FPT formalism can be 
generalized (15'27) to n dimensions, the rate-competition hysteresis criterion 
is not restricted to the single-component case, but can be applied, in 
principle, to multicomponent (16) or spatially varying order parameters. 

The plan of the paper is as follows. In Section 2 the model and method 
of solution are described and the results presented. Mean jump values 
/~j(~/; D) are compared with theoretical predictions. In Section 3 theoretical 
distributions p(hs; h) are derived and compared with the {h j} histogram 
from numerical simulation. Section 4 considers averages over independent 
domains, yielding m-h curves analogous to those in magnetic materials. 
Finally, Section 5 presents a summary of our results and a discussion. An 
Appendix gives the justification for the choice of the time discretization 
step used in the simulations. 

2. LANGEVIN DYNAMICS,  MEAN J U M P  VALUES, 
AND HYSTERESIS CRITERION 

The (overdamped) Langevin dynamics for the magnetization m is 
described by 

dm _ (Sob + f(t) (2.1) 
dt 6m 

where time t is appropriately scaled to be dimensionless. Here ( f ( t ) ) =  0 
and ( j 2 ( t ) j~ ( t ' ) )=2O6( t - t ' ) ,  where D is the diffusion constant, taken to 
be independent of m. The potential 

crp= _ ~  m2 + ~ m4_mh( t) (2.2) 

has two minima at rhl(h),rh2(h ), separated by a maximum at rh3(h ) 
(Fig. 2). ]a], ]b[, and D are dimensionless. The model may be viewed as a 
finite-volume single magnetic "domain" with the volume absorbed in the 
constants. For h = 0, rhl(0 ) = -rh2(0 ), and in thermodynamic equilibrium, 
a reversible first-order transition (rhl--*rh2) occurs for h = 0  +, i.e., in 
infinite time. For h = + he= +2(]al/3[b]) 3/2, at the spinodal points, one of 
the wells merges with the maximum and disappears. 

We consider linearly swept fields 

h(!) = h(0) +/zt (2.3) 

822/73/1-2-9 
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Fig. 2. Free energy cb(m) for various values of field h. 

where for a constant h ~ 0 a nonequilibrium state results, and h is inde- 
pendent both of time and field. The field is swept until the jump at h = hs 
takes place, and the system is then initialized again. Thus we concentrate 
on understanding an overshoot; the full sawtooth h(t) cycling is built up of 
these successive overshoots, and will be considered elsewhere. 

In a mechanical analogy, the state is a "particle" in a potential well of 
(2.2) that remains carried along in the metastable well rhl till the random 
force f ( t )  finally kicks it over the changing barrier th3(t), with a roll down 
to the final globally-stable state rh2. The passage time Tp includes both 
hopover and rolldown components (see footnote 2) in our definition of 
"passage." The F P T  in the one-dimensional case, such as (2.2), is exactly 
soluble, (15'2~ as an integral over the stationary distribution e -~/~ 

The Langevin equation (2.1) is solved numerically by discretizing time 
t ~ tn = n6t, with the random force j2(t) chosen from a Gaussian distribu- 
tion in each time step 6t (see Appendix). The constants are chosen as a = 2, 
b =  1. The field h(t) varies as in (2.3), as the simulation proceeds in time. 
The stochastic jump values {h j} of field h(r) when a "jump" from an initial 
rhl(0) to a final rh2(z ) occurs are recorded for N repeated runs. Mean 
values hj(/~) and jump distribution p(h j ;h)  are calculated for various 
values of diffusion constant D = 0.2, 0.5 and sweep rate Jt/hc = 0.005, 0.01, 
0.05, 0.1. The optimum value of 6t for our calculation is chosen to be 
6t = 0.001 (see Appendix), which is small enough for less than 5 % devia- 
tion from the benchmark of exact theoretical mean F P T  values, and large 
enough for reasonable run times (hours) on a MicroVax II. The number of 
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runs N is chosen such that the mean FPT  values Tp are reproducible to 
nearly 1% between any runs; typically, N ~  1000. 

For  completeness, we now outline the theoretical estimates made 
previously(15" 16) and obtain certain simple limits. 

In qualitative terms, the jump at h.l occurs when the sweep rate h is 
overtaken by the increasing decay rate as the metastability barrier 
decreases with/;1. As previously noted, this simple estimate (ll) is 

) "g de~ay (2.4) 

where the decay r a t e  Tde~ay can be (12'15"16} taken to be the inverse mean first 
passage time T~ 1. This rough criterion has been improved upon, (ls'16) and 
may be stated as follows. For  hysteresis to occur, the control parameter 
drags the metastable peak of the probability distribution 

Po(rhl(h(t)), h(t)) =- exp E e(m~,h)/Dl 

at a rate IPo/Pol ~ Ih 6(~/D)/6h[ that must be faster than the net rate of 
decay of the metastable well. This net rate of metastable decay is the dif- 
ference of the forward decay rh I --*n~ 2 and the reverse decay rh2-- ,~ 1 to 
and from the stable state. This is estimated by the difference in the inverse 
first-passage times T~](h)-T~](h).  Thus, for hysteresis to occur, one 
must sweep fast enough to outrace the decay, 

~q~/D 1 
//~>/lmin(h)= ~ [T~-~(h)- Tp~(h)] (2.5) 

As h increases, the net decay rate increases, since Te~ decreases with 
decreasing, barrier and the inequality is eventually violated. The mean jump 
value hj(h, D) at the breakdown of the hysteresis condition inequality is 
roughly estimated as 

/) =/)mi,(/~s) (2.6) 

Ideally, one would like to use a mean first-passage time for a moving- 
boundary case. Since this is not known, in general, we use the/)  = 0 first- 
passage times Tea(h), TpT(h) at the instantaneous h value in (2.5) above. 
Implicit in this is the assumption that the nonequilibrium state rapidly 
reequilibrates to, and follows, the moving minimum after each unsuccessful 
passage attempt. This "adiabatic following" condition yields the upper 
bracket hma• h of a "hysteresis window ''(15,16) for/~, as mentioned later. 
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For the high-barrier/weak-noise limit, the FPT expression given in the 
Appendix can be expanded in a sharp-peaking limit as 

Tp~ ~ ~ IIcolco3[ 1/2 exp{-Er162 
(2.7) 

T;tl  ,~ ~-alcozco3l 1/2 exp{ rr 

For a very slow sweep rate /~, (2.6) is expected to be satisfied for a 
small hs--jumps occur with only a small overshoot. In this limit h j / h  c ~ 1 
and hrhl/D ~ 1, from (2.5) and (2.7) we get 

it e+tata/4lblO (2.8) 

where co = Icolco3I 1/2. For fixed D, the mean jump value moves out linearly 
with sweep rate,/~j oc h. For faster sweep rate, however, the variation of/~j 
should become slower than linear in/~ (roughly, /)~ e -h, so h j ~  In/)). As 
the sweep rate is gradually increased, the hysteresis loop is expected to 
widen, at first rapidly, and then more slowly. Further, for fixed h, the jump 
value/~j (and therefore the hysteresis loop area) decreases with increasing 
diffusion constant D. Jumps aided by increasing D occur earlier, because 
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Fig. 3. Mean jump/~j(/~, D) versus/) for D = 0.2 (solid crosses x ) and 0.5 (solid circles � 9  
showing a widening of the hysteresis loop with sweep rate. Thick solid lines are the theoretical 
jump curves hmin(h, D) of (2.5). Dash-cross (D=0.2)  and dash-dot ( /?=0.5)  lines are the 
alternative jump criterion of (2.4). 
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the inequality (2.5) is violated sooner. These detailed predictions can be 
compared to numerical data. 

Figure 3 shows the theoretical jump limit hm~n of (2.5) (thick lines) 
versus h for two values of D = 0.2, 0.5. The vertical axis denotes "rates" and 
a constant/~ is then a horizontal line whose intersection yields the theoreti- 
cal/~j of (2.6). Note that for/;t = 0 one gets the thermodynamic "Maxwell 
construction" or reversible transition, with no hysteresis as/~j = 0. Figure 3 
shows the numerical simulation data (h,/~j) for D = 0.5, denoted by solid 
dots, and D = 0.2, denoted by solid crosses. Note that the numerical data 
are close to the corresponding solid lines, including the h ~ 0  region, 
lending support to the theoretical hysteresis criterion of Agarwal and 
Shenoy. 

The naive estimates (12~ of (2.4), i.e., T~(h) are also plotted for com- 
parison, as the cross-dashed line (D=  0.2) and dot-dashed line (D =0.5). 
Note that in this case for h--* 0, the naive estimate does not have/~j--* 0, 
because the possibility of reverse transition is not taken into account. The 
simulation values for D = 0.2 (solid crosses) and D = 0.5 (solid dots) are far 
away from the corresponding naive estimates. The detailed factors and 
reverse jumps of the detailed estimate of (2.5) are thus quantitatively 
important. 

Several authors (1~ 19,24,25) have studied hysteresis for a sinusoidal field 
sweep h = Ho cos(Ot)), and have sought a "universal" power-law dependence 
of the hysteresis loop area A with the amplitude Ho and frequency O of the 
field, namely A oc H;(2 ~ with c~ and fl independent of Ho, f2, and D. For 
a linearly swept field, the "equivalent dependence" is A oc h ~. However, our 
numerical simulation result (Fig. 4 )does  not show this simple power-law 
dependence, there being no single D-independent exponent 7 to fit the data. 
The hysteresis loop area curve rises steeply for/~ ~ 0, but the rate of varia- 
tion gets slower and slower (7 fractional) as h is increased. The expression 
(2.8) indicates an initial linear (7= 1) /~ dependence for / ~ 0 .  Within a 
limited range [0-0.1] of h/h c where a log-log plot can be roughly fitted to 
a straight line, the slope 7 is different for different D. (See Fig. 4, inset, 
where the data points are from the main figure.) 

The hysteresis condition (2.5) implicitly assumes an "adiabatic 
following" condition with a single "moving-minimum" description of the 
metastable state. For arbitrarily large h, this breaks down, as indicated 
earlier, (15'~6) and repeated briefly below. 

To observe a well-defined hysteresis the field-sweep rate must be 
smaller than the relaxation rate T r  1 of the metastable state. Naively, one 
has (12) 

T71 >/~ (2.9) 
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This condit ion has been refined (15'16) by noting that  in the deterministic 
field of force, the linearized kinetics is governed by 

drn 5cI)(m) m - rh 1 _ 82q~(rh) 

dt 5m Tr ' Tr 8rn 2 

(Noise terms are dropped,  as the condi t ion should be valid for any noise 
strength.) Fur thermore ,  

dt 8h 

Therefore, for the system not  to deviate appreciably from the metastable 
min imum as time progresses, we have 

d m - r h  
~ (m- - rh )  = 0  for ~ . < 1  

This leads to the condit ion 

1 

. . . .  =~L ah / 
>]~ (2.10) 
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Since T r 1 __, oQ as h --* he, analogous to critical slowing down at the 
limit of metastability, there must be a breakdown of the inequality close to 
he. For  the parameters chosen here, hmax(h) would be an almost vertical 
line in Fig. 3 (not shown), i.e., "good hysteresis" occurs almost up to h c. 

Turning to the diffusion constant (D) dependence, one would expect 
physically that jumps become enhanced, and the hysteresis loop shrinks, 
for increasing D with h fixed. This can also be seen from the simple form 
of (2.8). Figure 3 shows such behavior in the data for D = 0.2, 0.5 and a 
given/). Figure 5 shows /~j(/~. D) values, obtained from numerical simula- 
tion, versus D for fixed h/hc = 0.01. The data are compared to the theoreti- 
cal values obtained from the full expression of (2.5). Considering T ~ and P+ 
T~-~ contributions separately in (2.5), one finds the initial fall of hj  with D 
is due to the fall of T~-], while the leveling off is due to the backward T~-T l 
flow contribution becoming significant. [-The bars are standard deviations 
of the stochastic {hs} (non-Gaussian) distribution, and their lengths 
remain effectively unchanged even if the runs N are made larger. ] 

Thus the mean jump values/~j(/~) lend a fair quantitative support to 
the theoretical hysteresis window criterion of Agarwal and Shenoy within 
this simple Landau-Langevin model. It is to be noted that the F P T  
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Fig. 5. /~j(/~, D) versus D for fixed t~ = 0.01 h c (solid circles �9 ). Vertical lines show standard 
deviations of stochastic {h j}. The solid line is the theoretical estimate /~min(/~j, D) of (2.5). 
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concept is not restricted to the n = 1 component order parameter, but can 
be extended (27) to the m(r) multicomponent/spatially-varying case. The 
n = 4  but uniform case was worked out for the two-mode ring laser. (16'28) 

3. PASSAGE T I M E  A N D  J U M P  D ISTRIBUTIONS 

As is clear from the earlier sections, the passage of the system from 
one state to the other is driven by noise as well as the external field value. 
Therefore, the passage times that we record are stochastic, and the 
corresponding jump field values {hj}  follow a distribution p(hs; h, D). This 
distribution, which depends on parameters defining q~, in addition to /~ 
and D, is intrinsically broad. Figure 6 shows for D = 0.5 and h/hc = 0.05 the 
standard deviation o- N of hj  from the mean /~j(/~, D) for N repetitions, 
plotted versus N. Clearly aN ~ a~  r 0. There is a nonzero relative width of 
scatter of the vertical jumps in Fig. 1 that is intrinsic, and not an artefact 
of insufficient run statistics. The value N = 1000 typically chosen is already 
close to the N ~  ~ limit. It is thus not sufficient to compare the mean 
value hj to theoretical estimates; the distribution must be understood as 
well. 

0 3  

0 2  

O l  

, , , , 0.0 
0 200 400 600 800 I000 

N 

o- N 

Fig. 6. The s tandard deviation a N about  h s of the field j u m p  values {hs} as a function of the 
number  of runs  N (see text). 
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Since a general moving-boundary FPT analysis is not available, we try 
to understand these distributions using the well-known theoretical fixed- 
boundary first-passage time distributions P(r) in a suitable formulation. 
For h =  0, in the high-barrier/low-noise limit, Iq~(rh3)- q~(rhl.2)l/D >> 1 
(valid except close to he; refs. 15 and 28), the distributions of first-passage 
time r, except in the immediate vicinity of the origin, is exponential (2~ 

P(r, h) = T p](h) e r (3.1) 

This distribution has been experimentally verified for spontaneous switching 
in optically bistable ring lasers, (29) and for silica grains hopping in optical 
traps. (7) It holds (16/ also for general order-parameter dimension n. The 
distribution is broad, but finite moments ( z r ) = r ! ( z )  r are finite. In 
particular, fluctuations a t -  ( ( r -  ( ~ ) ) 2 ) v 2 / ( ~ )  about the mean Tp= (~)  
are of order unity. 

We need to make the theoretical fixed-boundary distribution relevant 
for the h r 0 case, in order to derive a valid expression for the hj distri- 
bution. We consider, instead of a linear sweep, very many piecewise 
constant-field "microsteps" h n = h ( t , )=  nhA. These steps have time width A, 
connected by vertical "microquenches," and follow the h(t)=ht  line 
(Fig. 7). The mean /~e, obtained previously from a strictly (h =/~t) linear 
sweep, is virtually unchanged in value in this sequential microquench h(t). 
The time width A is taken sufficiently small so that the time that the system 
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0 20 40 

J 
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Fig. 7. Field microsteps of time width (thick line) considered in (3.2) to emulate the linear 
field sweep (thin line) for h/hc = 0.005. 
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takes in the quenched state to roll down (noise effect included) to reach 
the new metastable minimum is less than 0.1A. Thus the system rapidly 
reequilibrates, and reinitializes to the suddenly changed well minimum at 
each microquench. Fixed-boundary results (=7) can then be safely invoked 
for each microstep. 

The probability density p(h~;/)) for a jump at hj=h 1 in the first 
constant-h step between 0 < r ~< A is given by p(hl;h)A ~- 
e-Z/r~l(h~)(A/Tp~(h~)), with A/Tp+ 41 .  After the first microquench, the 
system reequilibrates, and passage attempts begin afresh from a new initial 
time t = d. The probability for passage at the next step hs = h= is then 

p(h2; h)A --- [ 1 - p ( h l ;  h)A] eZ/T~(h2)(A/Tp+(h2)) 

for times A < r < 2A. (The prefactor ensures that passage has not previously 
occurred.) Thus for a jump at h j  = h, = nhA, 

(3.2) 

and an iterative solution can be obtained numerically for p(hj; h). Note 
that the contribution from the reverse jumps is neglected because 
Tp; /Te ,  ~ 1 for h not too close to zero. 

Figure 8 shows the {h j} histogram (thick solid line) along with the 
(thin solid line) theoretical distribution (3.2) for /~ = 0.005he and D =0.2. 
The agreement is good. For example, the theoretical ftj/hc=0.33 for 
/)/he=0.005 and D = 0 . 2  is within 1% of the numerical simulation 
histogram-based value. The hump in Fig. 8 arises because of the competi- 
tion between the falling probability of survival, given by the square bracket 
of (3.2), and the increasing probability of passage,, given by the remaining 
factors. The distribution broadens for increasing h =0.01he, 0.05hc, 0.1hc, 
with the theoretical curve following the numerical data closely for runs 
from initial values h(0)=0.  (For symmetric forward sweeps from 
h(0) = - h 0  to h = + ho, the theoretical peak occurs somewhat before the 
histogram value.) The inset shows the/is  versus/~ plot of Fig. 3 for D = 0.2; 
now the standard deviation of the stochastic {h j} are also shown. (These 
are not the error bars of the numerical experiment in determining /is; 
see Fig. 6. They represent the fact that {hs} is an intrinsically broad 
distribution in this model.) 

As the expression (3.2) is valid only for large times, deviations do 
occur in Fig. 8 for small hj/hc ~ 1 for small passage times 3. This might be 
especially true for larger D values. Figure 9 compares theory and the 
experimental histogram (for h/hc = 0.1) for a relatively large value D = 0.5. 
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Same as in Fig. 8, but for h/h,.=O.l and D=0.5 .  Fig. 9, 
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The mean values hj/ho from theory and experiment however, differ by only 
about 5 %. Thus p(hj;  Jr) of (3.2) matches the data quite closely. 

Thus the {h j} statistics from numerical simulations can be quan- 
titatively understood reasonably well in terms of a (suitably extended) FPT 
distribution. 

4. S I N G L E  M A G N E T I C  D O M A I N  M O D E L  

The uniform-m Landau model clearly ignores many features important 
in real magnets, (~) such as spatial magnetic domains, coupling anisotropies, 
etc. However, the model provides a conceptual picture of overshoot 
phenomena. An interesting aspect of the simulation is the instrinsically 
broad probability distribution p(hj;  [~) of jump fields for repeated sweeps. 
This at first seems contrary to experience in e.g., magnets, where M - h  
hysteresis curves are reproducible under fixed cycling conditions. However, 
a distribution of jump fields has also been invoked in (deterministic) 
phenomenological models, (s'6) where individual independent domains or 
"particles" are assumed to have different fields for - M ~  + M  flips. 
Characteristic M - h  hysteresis loops emerge on spatial averaging over the 
independent domains. No kinetic or stochastic effects are included in these 
models. We can consider, however, a collection of identical noninteracting 
finite-volume domains with magnetization described by the uniform-m 
Landau model and with stochastic thermal forces. This is in some sense a 
picture in the same spirit as the phenomenology of Barker eta/. ,  (s'6) but in 
an opposite conceptual regime. Since the N particles jump independently, 
spatially averaging during a single sweep will be equivalent to time averag- 
ing a single, finite-volume particle over N sweeps. The stochastic jump 
values {hs}. for the single, repeatedly cycled particle obey a jump distribu- 
tion p(h j ;h ) .  For a field swept in a sawtooth cycle from h ( t ) = - h  o to 
h ( t ) =  + h  o and back, the magnetization at a time ~ of an ensemble of 
identical domains is hence 

M(h( r ) )  = - 1 + 2 f~ p(h(t);  h)h dt (4.1) 

where the saturation magnetization is taken to be + 1, and 

h( t ) = - h o + J~t 

It is interesting to note that for very different reasons, similar ideas of a 
jump-field distribution [compare (4.1) and Eq. (2) of ref. 5] emerge from 
the phenomenology. 
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We plot M versus h in Fig. 10 for various field-sweep rates, diffusion 
constants D = 0.2, 0.5, and the p distribution from simulations, to check the 
qualitative shape of the hysteresis curve. The characteristic double-beaked 
M versus h curve emerges. Hysteresis is disfavored by larger D, as seen by 
comparing Figs. 10a and 10b: the loop area is reduced. 

An extension of these single-domain rate competition ideas to models 
with intergrain coupling or domain size variation would require solving 
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Hysteresis loops obtained from numerical simulations at sweep rates h/h,= 0.005, 
0.025, and 0.1 for (a) D=0.2 and (b) D=0.5. 
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coupled Langevin equations for {mi}, which would be difficult. However, 
even this simple model yields qualitatively reasonable M-h curves, 
indicating that the extension of rate competition ideas to more realistic 
magnetic models might be worth pursuing. 

5. D I S C U S S I O N  

We have performed numerical simulations of Langevin dynamics 
of a simple Landau model. A previous first-passage-time-based hysteresis 
criterion(iS. 16)for the mean jump field/~j (/~, D) is shown to be quantitatively 
validated in regard both to the field-sweep-rate and diffusion-constant 
dependence. The fluctuations in hj a re  also shown to be understood in terms 
of the FPT fluctuations. Thus a quantitative understanding of hysteresis is 
obtained within the conceptual framework of rate competition ideas for this 
simple model. 

Further work could include the consideration of a linearly swept h(t) 
and hysteresis in the master equation-based mean-field model of Paul 
eta/.  (23) The extension of the hysteresis criterion to realistic models in 
quantum optics, magnetism, and glasses requires a consideration of multi- 
component and spatially varying order parameters. The key quantity is the 
mean first-passage time, which can be expressed in terms of multicompo- 
nent integrals over the stationary distributions Po(m)=e -r The 
theoretical framework (FPT) is not restricted to single-component order 
parameters. (27'16) A calculation of the hysteresis window for the two-mode 
ring laser with a four-component order parameter [Elx, Ely; Ezx, E2y] has 
already been done. (~6) Further numerical work could include a simulation 
of the ring laser Langevin equation/29) with a linearly swept pump 
parameter a(t)= a l ( t ) - a 2 ( t ) =  a(O)+ (it or cosine time dependence. (4) An 
experimental check of hysteresis in real ring lasers with spontaneous 
switching between two modes, (4'29) but for constant rate ~i ~ 0, would be of 
much interest. Similarly, a linearly swept double-well optical trap of the 
silica grain (17~ would be a direct check of the theoretical predictions of (2.6) 
and Figs. 4, 5 and Figs. 8, 9. 

For condensed matter systems, in magnetism or glassy systems, 
spatially varying order parameters p(r) (e.g., the density) enter, which 
correspond to an infinite number of components. The first-passage time 
would then be a functional integral o v e r  e -~(p(r))/D. An example of a ~b(p(r)) 
model functional is the density-functional formalism of Ramakrishnan and 
Yussouf f ,  (3~ which describes liquid-to-crystal transitions or glassy states. In 
the context of critical cooling rates in glasses, Uhlman (3) has considered 
plots of melt-to-crystal transformation time versus temperature ( T -  T -  T 
curves). These can be reexpressed as rates (inverse FPT) versus the critical 
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control parameter, temperature, and interpreted as a particular shape of 
hysteresis window boundary. 

Another class of problems include the effects on hysteresis of colored 
noise, (31) which can be generated by external sources in laser systems, for 
example. Theoretically, this would be handled by calculating the F P T  for 
a delta-correlated model in one higher dimension. Simulations are under- 
way. (32) One might further consider a full back-and-forth sweep sawtooth 
h(t), with Jt piecewise constant, to understand stochastic-synchronization- 
like effects (17'33) in the F P T  rate competition picture. Preliminary simula- 
tions (32) show a series of diminishing peaks of jump fields (or times) similar 
to experiment. (17) We hope to report on some of these applications 
elsewhere. 

In summary, we have numerically simulated the Langevin dynamics of 
a simple finite-volume Landau model, and found supporting evidence for 
a theoretical hysteresis criterion based on rate competition, and with a 
broad, but theoretically understandable distribution of stochastic jump 
values. These ideas could have relevance in magnetic hysteresis and glassy 
supercooled systems. 

APPENDIX  

The numerical solution (34) of the stochastic differential equation (2.1) 
involves a time discretization t -~ tn = n& and a choice of a random force 
value from a Gaussian distribution (35) (constant) within each time step of 
size 6t. Since the equation is nonlinear, the choice of 6t is crucial to get 
results of reasonable accuracy. The physically correct solution would be to 
take fit ~ 0: time is continuous. However, as the value of fit is reduced, the 
computer time spent to integrate between two given points increases, limit- 
ing accessibility of small 6t values. This we see by repeating the experiment 
of Suzuki (36) for a system to roll down the potential surface (2.2) (with 
h = 0, /~ = 0) from the unstable point to either of the equivalent minima 
for various 6t values. The computer time with ~St--. 0 increases rapidly. 
For example, with the same initial seed value for the random number 
generator (for example, - 2 )  for 3t = 0.01, 0.001, and 0.0001 the CPU-times 
in MicroVax II were 38, 99, and 437 sec, respectively. The trajectories 
followed in all the three cases (in the m - t  plane) are also different. Since we 
are following a stochastic process, which involves averages over many runs, 
the results are not conclusive unless we can fix fit physically and remove 
arbitrariness in the choice. The criterion we adopt, therefore, is to choose 
a value of 6t so as to match theoretically calculated (6t = 0) mean first- 
passage times to within a specified accuracy. This 6t is then used in the 
hysteresis simulations. 



The mean first-passage time Te of a r andom viarable is known  from 
solving a F o k k e r - P l a n c k  based differential equation. (2~ The initial, t = 0, 
value m ( t ) =  m(0) is in an "inside" region s and it moves randomly  to 
meet the boundary  ~3~2 in a r andom time ~. For  m(t) a single componen t  
(as in our  case), an exact solution (15'2~ for T e =  < r )  from m=minitia 1 
(in our  case rhl) to m=mnnal (rn3, for example) is 

fm ~ dm" fm" rp = - 3 DPo(m") oo dm' Po(m') (A.1) 

where 

1.55 

Po(m) =e  ~(m)/D (A.2) 

This is easily evaluated for various values of h in (2.2), and provides a good  
check on our  numerical  simulation result. Fo r  the general (n-component)  
case the F P T  expression is also an (n-component)  integral over the 
s tat ionary distribution. (27'16l 

The mean F P T s  are evaluated for various h values from the computer  
simulation of (2.1) for passage from rhl to rh3 for various values of 6t over 
many  repeated runs. The number  of runs taken was such that  the fluctuation 
of the mean F P T  is b rought  to about  1%. In  Fig. 11 we show the variat ion 
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Fig. 11. Numerically simulated T e for h=0, h/hc=0.9, and D=0.2 as a function of 
discretization time unit fit. The theoretical value (fit --+ 0) is shown on the Tp axis by an arrow. 
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Fig. 12. Comparison of numerically simulated Tp(h) ( 0 )  with (6t=0.001) with the 
theoretical values (solid line) for which 6t = 0. The passage boundary is taken to be the peak 
of the free-energy barrier. 

of the simulated mean F P T  with fit. Note that the curve converges toward 
the theoretical value on extrapolation to f t = 0  (the theoretical value 
marked by an arrow). As a compromise between the loss of accuracy and 
affordable computer  run time, we choose f t  = 0.001 in our calculation, for 
which the difference between simulated and theoretical mean F P T  values 
remains well below 5 % for almost the entire range [0, 1 ] of h/h , .  For 
better comparison we plot in Fig. 12 the theoretical and numerically 
simulated mean F P T  values for f t  = 0.001 and h/hc. in the range [0, 1 ]. We 
see that the comparison is very good except close to h/hc = 0 and h/hc = 1. 
Close to h / h c = O  the deviations (,-~10%) occur because (A.1) does not 
account for the reverse passage FF/3 ~ f/~/1 . The deviations close to h/h c = 1 
occur because in this test calculation we choose the absorbing boundary to 
be the unstable maximum (rh3) of the potential 05, and the mean F P T  
becomes comparable to f t  as the barrier vanishes. This last problem does 
not appear  in our main calculation because there we choose the final 
boundary point to be the stable minimum (rh~), so that Tp is always much 
larger than f t .  

Thus the exact expression for the mean F P T  serves as a benchmark to 
fix the discretization step fit = 0.001 in hysteresis simulations. 

822/73/1-2-10 
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